The existence of maximal n-orthogonal subcategories

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of maximal n-orthogonal subcategories

Article history: Received 30 April 2008 Available online 6 March 2009 Communicated by Luchezar L. Avramov

متن کامل

4 M ar 2 00 9 The Existence of Maximal n - Orthogonal Subcategories ∗ †

For an (n− 1)-Auslander algebra Λ with global dimension n, we give some necessary conditions for Λ admitting a maximal (n − 1)-orthogonal subcategory in terms of the properties of simple Λ-modules with projective dimension n − 1 or n. For an almost hereditary algebra Λ with global dimension 2, we prove that Λ admits a maximal 1orthogonal subcategory if and only if for any non-projective indecom...

متن کامل

9 Higher Auslander Algebras Admitting Trivial Maximal Orthogonal Subcategories

For an Artinian (n− 1)-Auslander algebra Λ with global dimension n(≥ 2), we show that if Λ admits a trivial maximal (n − 1)-orthogonal subcategory of modΛ, then Λ is a Nakayama algebra and the projective or injective dimension of any indecomposable module in modΛ is at most n− 1. As a result, for an Artinian Auslander algebra with global dimension 2, if Λ admits a trivial maximal 1-orthogonal s...

متن کامل

Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories

We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...

متن کامل

Higher Auslander algebras admitting trivial maximal orthogonal subcategories

For an Artinian (n− 1)-Auslander algebra Λ with global dimension n(≥ 2), we show that if Λ admits a trivial maximal (n − 1)-orthogonal subcategory of modΛ, then Λ is a Nakayama algebra. Further, for a finite-dimensional algebra Λ over an algebraically closed field K, we show that Λ is a basic and connected (n−1)-Auslander algebra Λ with global dimension n(≥ 2) admitting a trivial maximal (n− 1)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2009

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2009.01.036